INTERACTIONS

The science of matter, space and time

High-Energy Physics

The deepest secrets of the universe

INTERACTIONS: Unlocking the deepest secrets of the universe

- What is the universe made of?
- How does it work?
- Where did it come from?

Matter, space and time

INTERACTIONS The science of matter, space and time

- To unveil MATTER's ultimate building blocks
- To find the hidden dimensions of SPACE
- To discover what points the arrow of TIME

- > Fulfilling Einstein's dream of unified forces and energy
- Revealing the power source for the Big Bang

Recent discoveries

Recent discoveries point to a new world

- Mysterious dark particles bind the universe together.
 An unknown force drives it apart.
- An unseen sector casts its shadow on recent experiments.
- Theoretical breakthroughs point to hidden dimensions, unified forces and parallel universes.
- Technology breakthroughs—superconductivity, nanotechnology, lasers, information technology—promise the means to explore this new world.

Dark particles, dark forces

Dark particles, dark forces

- Most of the universe's matter is dark, unknown—and not made of atoms.
- A mysterious dark force permeates space and drives the universe apart.
- Where is the antimatter in our universe? No antigalaxies, no antistars, no antiplanets...

Shadows of a new world

The shadows of a new world — just beyond reach

- Quantum effects tell us that the Higgs boson should appear in the next round of experiments.
- Evidence that neutrinos change their identities suggests
 new interactions and that neutrinos are part of dark matter.
- Experiments studying the mysterious differences between matter and antimatter probe the arrow of time.

Theoretical breakthroughs

Theoretical breakthroughs

Powerful ideas (supersymmetry, superstrings ...) point to

- new particles
- new forces
- hidden dimensions of space

We can explore this new world by experiment.

Technology breakthroughs

High-energy particle beams reveal the smallest objects human beings have ever seen—a billion times smaller than the most powerful microscope can see.

Technology breakthroughs to explore the new world

- Superconducting magnets
- Nanometer beams
- Laser instrumentation
- Information technology

21st century

INTERACTIONS Toward a new understanding of matter, space and time in the 21st century

- Expose the hidden dimensions of space
- Explore quantum physics beyond Feynman
- Reveal the true nature of quarks and leptons
- Connect to the cosmos

Hidden dimensions

Expose the hidden dimensions of space

Theories predict a world of new dimensions.

- Supersymmetry predicts quantum dimensions connecting forces and matter.
- Unification of gravity with the other forces requires dimensions beyond the three that we know.
- Could there be extra time dimensions?
- Are we part of a multidimensional megaverse?

Beyond Feynman

Explore quantum physics beyond Feynman

- Discover the energy realm of unification: Do all forces become one?
- Test the stability of matter: Are protons forever?
- Grapple with the nature of gravity: How are space and time quantized?
- Explore the new world of String Theory:
 Are we notes plucked on tiny loops of string?

True nature of quarks and leptons

Understand the true nature of quarks and leptons

- Uncover the wellspring of mass:Why don't all the particles weigh the same?
- Discover supersymmetry: Do quarks and leptons have counterparts in the shadow world?
- Reveal the secrets of neutrino metamorphosis: Why can't neutrinos decide who they are?
- Understand the absence of antimatter: Why is there any matter at all?

Cosmic connection

Connect to the cosmos

- Create dark matter in the laboratory, and detect its presence in the universe.
- Discover the origin of the mysterious dark energy that accelerates the expansion of the universe.
- Explore the universe with elementary particles.
- Connect the beginning of the universe to fundamental physics.

Bold ideas, innovative tools

INTERACTIONS: A new world revealed by bold ideas and innovative tools

- The discoveries of the 21st century will require a new generation of accelerators and detectors.
- R&D will lead to new and cheaper tools.
- Developing technology for a frontier facility takes sustained effort over many years.

The discoveries of tomorrow require investment in R&D today.

Today's students, tomorrow's leaders

INTERACTIONS Preparing tomorrow's leaders in science, technology and society

- Students learn science by taking an active part in frontier research.
- University particle-physics research requires national and international laboratories.
- The university-national laboratory partnership puts students at the forefront of particle-physics research.

Today's students are tomorrow's leaders.

The People's Universe

INTERACTIONS: It's your universe too!

- The fundamental questions of the universe are not just for physicists.
- The public will share the excitement of discovery.
- Through the World Wide Web, every schoolchild will be able to see high-energy particle collisions as they happen—once only possible for a few scientists.

Physics without borders

INTERACTIONS Physics without borders

- Particle physics is a high-energy collaboration of scientists worldwide.
- Building frontier facilities of the future challenges us to find new models of international partnership.

Plans for the future

INTERACTIONS The Community plans for the future

The High Energy Physics Advisory Panel and community summer studies provide a continuing planning process

- 1998: The Decadal NRC Study and HEPAP Subpanel recommended a new U.S. facility at the energy frontier and R&D to lead us to the new frontier.
- 2000: HEPAP White Paper places U.S. program in a world context of future frontier facilities.
- 2001: Snowmass meeting of the APS
- 2001: DOE/NSF HEPAP subpanel

Secrets of matter, space and time

INTERACTIONS will unlock the deepest secrets of matter, space and time

- Unify the extraordinary discoveries that revolutionized the 20th century.
- Develop technologies and make discoveries that will revolutionize the 21st century.

Take strong U.S. leadership into a dynamic global era of discovery.

